语言模型数据处理

1
2
3
4
data = [("me gusta comer en la cafeteria".split(), "SPANISH"),
("Give it to me".split(), "ENGLISH"),
("No creo que sea una buena idea".split(), "SPANISH"),
("No it is not a good idea to get lost at sea".split(), "ENGLISH")]

out[]

[([‘me’, ‘gusta’, ‘comer’, ‘en’, ‘la’, ‘cafeteria’], ‘SPANISH’),
([‘Give’, ‘it’, ‘to’, ‘me’], ‘ENGLISH’),
([‘No’, ‘creo’, ‘que’, ‘sea’, ‘una’, ‘buena’, ‘idea’], ‘SPANISH’),
([‘No’, ‘it’, ‘is’, ‘not’, ‘a’, ‘good’, ‘idea’, ‘to’, ‘get’, ‘lost’, ‘at’, ‘sea’], ‘ENGLISH’)]

1
2
3
4
5
6
7
word_to_ix = {}
for sent, _ in data + test_data:
for word in sent:
if word not in word_to_ix:
word_to_ix[word] = len(word_to_ix)
print(word_to_ix)
print (word)

out[] sent

[‘me’, ‘gusta’, ‘comer’, ‘en’, ‘la’, ‘cafeteria’]
[‘Give’, ‘it’, ‘to’, ‘me’]
[‘No’, ‘creo’, ‘que’, ‘sea’, ‘una’, ‘buena’, ‘idea’]
[‘No’, ‘it’, ‘is’, ‘not’, ‘a’, ‘good’, ‘idea’, ‘to’, ‘get’, ‘lost’, ‘at’, ‘sea’]

out[] word

me
gusta
comer
en
la
cafeteria
Give

……

out[] word_to_ix

{‘en’: 3, ‘No’: 9, ‘buena’: 14, ‘it’: 7, ‘at’: 22, ‘sea’: 12, ‘cafeteria’: 5, ‘la’: 4, ‘to’: 8, ‘creo’: 10, ‘is’: 16, ‘a’: 18, ‘good’: 19, ‘get’: 20, ‘idea’: 15, ‘que’: 11, ‘not’: 17, ‘me’: 0, ‘gusta’: 1, ‘lost’: 21, ‘Give’: 6, ‘una’: 13, ‘comer’: 2}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import os
import torch
from collections import Counter
class Dictionary(object):
def __init__(self):
self.word2idx = {}
self.idx2word = []
self.counter = Counter()
self.total = 0
def add_word(self, word):
if word not in self.word2idx:
self.idx2word.append(word)
self.word2idx[word] = len(self.idx2word) - 1
token_id = self.word2idx[word]
self.counter[token_id] += 1
self.total += 1
return self.word2idx[word]
def __len__(self):
return len(self.idx2word)
class Corpus(object):
def __init__(self, path):
self.dictionary = Dictionary()
self.train = self.tokenize(os.path.join(path, 'train.txt'))
self.valid = self.tokenize(os.path.join(path, 'valid.txt'))
self.test = self.tokenize(os.path.join(path, 'test.txt'))
def tokenize(self, path):
"""Tokenizes a text file."""
assert os.path.exists(path)
# Add words to the dictionary
with open(path, 'r') as f:
tokens = 0
for line in f:
words = line.split() + ['<eos>']
tokens += len(words)
for word in words:
self.dictionary.add_word(word)
# Tokenize file content
with open(path, 'r') as f:
ids = torch.LongTensor(tokens)
token = 0
for line in f:
words = line.split() + ['<eos>']
for word in words:
ids[token] = self.dictionary.word2idx[word]
token += 1
return ids
-------------本文结束感谢您的阅读-------------
很有帮助,打赏感谢!
0%